New research being conducted by a team at the Queensland University of Technology (QUT) is promising to detail how and why koalas respond to infectious diseases, such as the spread of chlamydia which is decimating the nation’s population.

The joint undertaking between QUT and The Australian Museum has unearthed a wealth of data, including the koala interferon gamma (IFN-g) gene - a chemical messenger that plays a key role in the iconic marsupial's defence against cancer, viruses and intracellular bacteria. 

Professor Peter Timms, from QUT's Institue of Health and Biomedical Innovation (IHBI), said the IFN-g gene was the key to finding a cure for diseases such as Chlamydia and Koala Retrovirus (KoRV), currently threatening the vulnerable species.

"We know koalas are infected with various strains of Chlamydia, but we do not know why some animals go on to get severe clinical disease and some do not," Professor Timms said.

"We also know that genes such as IFN-g are very important for controlling chlamydial infections in humans and other animals. Identifying these in the koala will be a major step forward in understanding and controlling diseases in this species. "

Dr Polkinghorne from QUT's School of Biomedical Sciences said data sets from immune-related tissues of Birke, a koala who was euthanized following a dog attack, have revealed a wealth of information about the species' immune system including the sequences of at least 390 immune-related genes.

"Virtually nothing is known about the immune system of the koala and the absence of information has been a major hinderance to our efforts to understand how Chlamydia and KoRV infections lead to such debilitating disease in this native species," he said

"By analysing this information we should be able to determine if KoRV is sitting harmlessly in these koalas or if it's potentially triggering cancer or resulting in mild Chlamydia infections becoming a serious clinical disease," Professor Timms said.

The finding will also help researchers understand why Queensland and New South Wales koala populations have been crippled by the spread of Chlamydia while Victorian populations are much less unaffected.

The project will also aid the conservation of other Australian wildlife, with the team of researchers revealing that the majority of koala sequences shared similarities to that of the Tasmanian Devil.